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Abstract 

Natural languages abound in combinatorial phenomena that are related to the predicate of the sentence 
and its ability to permute noun phrase arguments. After compiling several illustrative phenomena of 
natural languages, I propose a novel analysis in terms of permutation groups, a concept borrowed from 
mathematical combinatorics that is ubiquitous in applied sciences. I show that each natural language 
predicate of degree n (n natural number) can be associated with two permutation groups of degree n. 
The first group measures the predicate’s flexibility to permute arguments in two independent events, 
whereas the second group captures permutations in two dependent events. These groups serve as 
linguistic tools to help predict the predicate’s grammaticality pattern in a range of natural language 
constructions.  
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1. Combinatorics in linguistics: A review  

In philosophy and linguistics, combinatorial tools have been discussed previously, notably the concepts 
of reflexivity, symmetry and transitivity which are the ingredients of equivalence relations. Scholars 
were mainly interested in philosophical and cognitive accounts of the concepts of equality, identity, 
similarity etc. Quine (1969: 114-138) and Sovran (1992: 329) remarked for example that the notion of 
similarity notoriously resists any formal characterization as it fails to be transitive and thus to be an 
equivalence relation.  

Several scholars also introduced the combinatorial notion of permutation to linguistics – in the 
context of generalized quantifier theory. On the following two pages, I illustrate this use of permutation 
and explain how it differs from the use made in this paper. Barwise & Cooper (1981) pioneered the 
view of noun phrases and noun determiners as quantifiers, called generalized quantifiers. Using 
type-theoretic notations (and replacing the Montagovian symbol “e” for “entity” by “1”), we can 
distinguish three types of generalized quantifiers:  

 
(i) <1> quantifiers are full noun phrases like John, these students, all teachers;  
(ii) <1,1> quantifiers are one-place determiners like all, no, most;  
(iii) <<1,1>, 1> quantifiers are two-place determiners like more…than, less…than.  
 
These linguistic expressions are mathematically interpreted in E, a universe of objects. For, 

example, the <1> quantifier John refers to all individuals in E whose name is John. These individuals 
can be understood as a set of singletons {{a}, {b},…}. The <1> quantifier all teachers refers to all 
exhaustive groups of individuals who are teachers in a given situation. We can thus interpret all 
teachers as a set {A, B,…} of subsets of E. The <1,1> quantifier all refers to pairs of groups of 
individuals (A, B) such that all individuals of A are also individuals in B. Put differently, all can be 
interpreted as a set of pairs {(A, B) | A ⊆ B}. The <<1,1>, 1> quantifier more…than (as in the girls are 
more intelligent than the boys) can be viewed as a triple of groups of individuals (A, B, C) such that the 
set of individuals that are both in A (girls) and C (intelligent individuals) is larger than the set of 
individuals that are both in B (boys) and C (intelligent individuals). On a technical level, more…than 
can thus be understood as the set {(A, B, C) | card(A ∩ C) ≥ card(B ∩ C)}.  

To sum up, if ℘(E) denotes the powerset of E, that is the set of all subsets of E, then we can 
interpret each generalized quantifier in the following way.  

 
(i) <1> quantifiers denote subsets Q ⊆ ℘(E);  
(ii) <1,1> quantifiers denote subsets Q ⊆ ℘(E) × ℘(E);  
(iii) <<1,1>, 1> quantifiers denote subsets Q ⊆ ℘(E) × ℘(E) × ℘(E).  
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Several scholars (e.g. van Benthem 1984; Keenan & Stavi 1986; Keenan & Westerståhl 1997) 

made use of permutations for characterizing a special property of <1,1> quantifiers, called permutation- 
invariance. The linguistic idea behind permutation-invariance is familiar and corresponds to the 
intuitive notion of indefiniteness. It is in the formal apparatus of generalized quantifiers that this 
property has an interesting representation. <1,1> quantifiers are either definite or indefinite. The 
meaning of definite <1,1> quantifiers does not only depend on the size of the referent but also on a 
context and a familiarity relation. However, indefinite <1,1> quantifiers, such as all, any, a, only 
depend on size properties not on the identity of the referent. Put differently, indefinite <1,1> quantifiers 
tolerate substitutions of referents that preserve their size but change their identity. This property can be 
captured by the notion of permutation which has several slightly different meanings in mathematics. In 
the general case, a permutation is a bijective (injective and surjective) map π: E → E. Indefinite 
quantifiers are invariant to permutations under substitution.1  

 
(1) Permutation-invariance: A quantifier Q ⊆ ℘(E) × ℘(E) is permutation-invariant iff for all 

permutations π: E → E and all A, B ⊆ E we have  
QπAπB iff QAB. 

 
The property of permutation-invariance contrasts with the use of permutations made in this paper. 

The first difference, though minor, concerns the lexical class the notion of permutation is intended for. 
We apply permutations in this paper to verbal predicates not nominal determiners. At a technical level, 
however, this difference does not matter very much. Verbal predicates and nominal determiners can be 
interpreted in a similar way.  

 
(i) intransitive predicates denote subsets P ⊆ ℘(E);  
(ii) monotransitive predicates denote subsets P ⊆ ℘(E) × ℘(E);  
(iii) ditransitive predicates denote subsets P ⊆ ℘(E) × ℘(E) × ℘(E).  
 

The notion of permutation-invariance, as defined in (1), is unproductive for monotransitive verbal 
predicates as almost no verbal predicate is permutation-invariant (see Westerståhl 1985: 396 for a 
similar comment on adverbs which he interprets as in ii).  

Permutations are a productive tool for verbal predicates if we use them not to substitute groups of 
individuals but rather to swap argument slots. This idea would be much closer to the original sense 
permutations have in discrete mathematics. In discrete combinatorics, a permutation is a bijection     
π: {1,…,n} → {1,…,n} of a finite (ordered) set onto itself. As I illustrate in §2, there are many 
linguistic phenomena that are sensitive to the degree of flexibility with which a natural language 
predicate can swap its arguments. For example, the three-place predicate give like in John gives Mary a 
book is compatible with π1 but incompatible with π2, as defined below:  

 
 π1: {1,2,3} → {1,2,3} π2: {1,2,3} → {1,2,3} 
       1  →   2 

      2  →   1 
      3  →   3 

       1  →   3 
       2  →   2 
       3  →   1 

 

                                                 
1 Stabler & Keenan (2003) applied the idea of permutation-invariance also to automata theory in computer science. For 
Minimalist Languages (a subtype of Multi-Component Context-Free Languages), they employ permutations for modeling the 
notion of structural similarity within and across natural languages. Permutations or automorphisms, as they call them, are 
defined with respect to the set F of generating functions of a minimalist grammar G. Any bijection h: L(G) → L(G) is a 
syntactic permutation (or automorphism), if it maps every generating function F ∈ F onto itself: h(F) = F. Two structures s,t ∈ 
L(G) are similar if there is a syntactic permutation h: L(G) → L(G) such that h(s) = t. On a restricted scale, the notion of 
structural similarity can also be defined for lexical extensions of a minimalist language L(G) but not for arbitrary pairs of 
minimalist languages L(G) and L(G'). (At least, Stabler and Kenan did not indicate a way of defining this notion in the general 
case.) The idea of automorphism appears to be very different from the way permutations are conceptualized in discrete 
mathematics and also in this paper.  
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An n-place predicate P (whose denotation we also write by P) may or may not be compatible with 
a permutation π: {1,…,n} → {1,…,n}. The aim of this paper is to count the number of permutations 
compatible with a given predicate and to enlighten linguistic phenomena through this number. To sum 
up, we may characterize the approach of this paper not as a problem of permutation-invariance but as a 
problem of permutation-variance.  

 
(2) Permutation-variance: Let P ⊆ ℘(E)n be a predicate and π: {1,…,n} → {1,…,n} be a permuta-

tion. P is π-variant (or π-compatible) iff for all A1,…, An ⊆ E we have 
PAπ(1),…, Aπ(n) iff PA1,…, An. 

 

2. Small corpus of linguistic combinatorial problems  

To motivate permutations in linguistics, I shall illustrate that permutations help state grammaticality 
properties of sentence constructions. I compile several natural language phenomena and present them in 
the order of the permutations for which they show sensibility: the identity permutation (§2.1), the 
symmetric permutation (§2.2), S3 (§2.3) and S4 (§2.4). Linguistic illustrations are drawn from several 
languages of the world previously reported in the linguistic (typological) literature.  

2.1 The identity permutation  

The possibility of an event to be repeated with the same constellation of arguments influences the use of 
grammatical aspect in many languages, especially quantificational aspect. As a grammatical category, 
quantificational aspect (with the experiential and habitual aspects as the two major exponents)2 is 
attested in several language families worldwide. Most languages of East Asia exhibit experiential 
aspect particles that are ungrammatical with sentence predicates whose referring event cannot be 
repeated with the same (referring) NP arguments. This selectional restriction is well known by 
specialists of East Asian languages as the “repeatability property” (for Chinese see Pan & Lee 2004, for 
Japanese see Inoue 1975, for Korean see Kim 1998, for the Yi languages see Gerner 2004). The 
repeatable constraint also applies to the habitual aspect. Furthermore, so-called weak-repeatable 
(stage-level) 3  predicates are compatible with the experiential and habitual aspects, whereas 
strong-repeatable (individual-level)4 predicates are incompatible (Gerner 2004:1347).  

We employ the terms unrepeatable, weak-repeatable and strong-repeatable defined later more 
rigorously. These repeatability properties and their selectional restrictions on quantificational aspect are 
shown for the two sentence-end particles s`22 (experiential) and jΩdm42 (habitual) in Kam.5  

 
  Kam language (Kam-Tai family: Guizhou Province, P.R. of China)  
(3) a. )l`n22 sâh44 s`22 .jΩdm42. P unrepeatable 
   3P SG die EXP  HAB  

‘*He experienced dying. / He used to die.’  

 b. )l`n22 j`n42 lâh20 jtj212 „`22 s`22 / jΩdm42. P unrepeatable 
   3P SG wear out CL clothes DEM:DIST EXP HAB  

‘*He experienced wearing out the clothes. / He used to wear out the clothes.’  
                                                 
2 The grammatical category of experiential aspect is restricted to two major regions of the world: Africa and East Asia (Dahl 
1985: 140). The languages in East Asia in which theoretical studies for the experiential aspect were proposed include Korean, 
Japanese, Chinese, and some Tibeto-Burman languages. The habitual aspect is attested in all major language families of the 
world (cf. Bybee et al. 1994) and surfaces either as inflectional category in conjugation systems (e.g. French past tense 
conjugation) or as sentence-end particle after the verb (e.g. Kam).  
3 For the notions of stage-level and individual-level, see Kratzer (1995) and also Carlson (1977).  
4 See previous footnote. 
5 The numbers 44, 02 etc. are tone markers and indicate relative pitch on a scale from 1 (lowest) to 5 (highest). The first 
number represents the beginning and the second number the end of the tonal contour. The transcription of sounds in this paper 
follows the International Phonetic Alphabet without shortcuts. For the interlinear abbreviations used in the examples, refer to 
the section of abbreviations.  
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(4) a.  l`n22 jn44 sÉ`20sÉ`20 s`22 . jΩdm42. P weak-repeatable 
   3P SG laugh IDE-IDE EXP HAB (P stage-level) 

‘He experienced laughing with a roaring voice. / He used to laugh with a roaring voice.’  

 b.  l`n22 k`ì02 sn44 l`j212 s`22 . jΩdm42. P weak-repeatable 
   3P SG open door, gate big EXP HAB (P stage-level) 

‘He experienced opening the big gate. / He used to open the big gate.’  

(5) a. )sÉ`j00 sÉâm00 „`22 o∏`ì24 s`22 . jΩdm42. P strong-repeatable 
   CL mountain DEM:DIST high EXP HAB (P individual-level) 

‘*The mountain was once high. / The mountain used to be high.’  

 b. )i`n00 k`n20 l`n22 s`22 . jΩdm42. P strong-repeatable 
   1P SG old(er) 3P SG EXP HAB (P individual-level) 

‘*I experienced being older than him. / I used to be older than him.’  

 
The possibility of repeating an event with the same referring arguments is a combinatorial 

property of the predicate, a property related to the identity permutation.  
 

1.2 The symmetric permutation 

The ability of a predicate to swap arguments in two independent or two dependent events interacts with 
several sentence constructions.  

First, many native languages of North America involve inverse marking which was mistakenly 
viewed as a sort of passive marking (Whaley 1997). Inverse marking encodes a subject/object reversal 
and is expressed by a verbal affix to indicate that the arguments are swapped in comparison to a related 
construction, called the direct construction, in which the affix is missing. The availability of inverse 
marking depends on the symmetry type of the predicate. Data originate from Kutenai (Dryer 1994, 
1996, 2008), a language isolate spoken in British Columbia (Canada). In Kutenai, inverse marking is 
possible, if the predicate allows the symmetric permutation of its arguments, as in (4a+b), but is 
impossible if it is basically asymmetric, as in (5a+b). The verbal inverse affix is -aps-.  

 
  Kutenai language (language isolate assimilated with Algonquian family: Canada, USA) 
(6) a.  vtj`s,h mh¶,r o`łjhx,r mh¶ shsp`ť  P symmetric 
   see-INDIC the-OBV woman-OBV the man  Direct clause 

‘The man saw the woman.’  

 b.  vtj`s,`or,h mh¶,r o`łjhx,r mh¶ shsp`ť  P symmetric 
   see-INV-INDIC the-OBV woman-OBV the man  Inverse clause 

‘The woman saw the man.’  

(7) a.  s`w`,r m<hj,mh skinku¢ mh¶,r ¶`jtłal-s.  P asymmetric 
   then-OBV INDIC=eat-INDIC coyote the-OBV meat-OBV  Direct clause 

‘Then Coyote ate the meat.’  

 b. )s`w`,r m<hj,`or,mh skinku¢ mh¶,r ¶`jtłal-s. P asymmetric 
   then-OBV INDIC=eat-INV-INDIC coyote the-OBV meat-OBV Inverse clause 

‘*Then the meat ate Coyote.’  

 
Second, reciprocal constructions (with a reciprocal anaphor or a reciprocal verb affix) are sensitive 

to the symmetric type of the predicate too. We call these symmetric types informally asymmetric, 
weak-symmetric and strong-symmetric. Examples (8)-(10) show them for the Chinese verb affix bĭcĭ 
(‘each other’) in reciprocal constructions and in sentences in which the event with permuted arguments 
is negated.  
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  Standard Chinese (Sinitic group: P.R. of China)  
(8)  )他们 彼此 埋葬。  P asymmetric 
   tā mén bĭcĭ mái záng.   
   3P PL RECL bury   

‘They bury each other.’ 

 
(9) a.  他们 彼此 安慰。  P weak-symmetric 
   tā mén bĭcĭ ān wèi.   
   3P PL RECL comfort   

‘They comfort each other.’  

 b.  他 安慰 你，   P weak-symmetric 
   tā ān wèi nĭ    
   3P SG fear 2P SG    

   但 你 不 安慰 他。  
   dàn nĭ bù ān wèi tā.  
   but 2P SG NEG fear 3P SG  

‘He comforts you, but you do not comfort him.’  

 
(10) a.  他们 彼此 相象。  P strong-symmetric 
   tā mén bĭcĭ xiāng xiàng-   
   3P PL RECL resemble   

‘They resemble each other.’ 

 b. )他 象 你，   P strong-symmetric 
   tā xiàng nĭ    
   3P SG resemble 2P SG    
   但 你 不 象 他。  
   dàn nĭ bù xiàng tā  
   but 2P SG NEG resemble 3P SG  

‘He resembles you, but you do not resemble him.’  

 

1.3 The permutation group S3  

In most languages, there are ditransitive predicates that can take three human NPs as arguments 
allowing them to be permuted in any possible way. However, only in so-called free word order 
languages do these ditransitive predicates interact with the syntactic marking system.  

Free word order languages generally compensate for their syntactic flexibility with case or 
agreement marking. The isolating Lolo language is verb-final with free word order of its arguments. It 
exhibits a differential-object case marking driven by ambiguity (Gerner 2008). The morpheme sghd10 is 
a combined focus and case marker. It functions as a focus marker when the predicational frame of the 
sentence is not inherently ambiguous such as in Mary washes three trousers, but assumes the meaning 
of case marker when the predicational frame is ambiguous like in Mary bites John. 

 
  Lolo language (Tibeto-Burman family: Yunnan Province, P.R. of China) 
(11) aÖ22kt10 lÖ22kt22 rÖ22 j∏â22 s∏hd10 sr∏Ÿ10 Ö22-  sghd10 focus marker 
 name of man trousers NUM:3 CL O-marker wash DP   
 S O V   

‘Bolu has washed THREE pairs of trousers [not just TWO]’  
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(12) a. rŸ22j`44  üd22j∏ë22 s∏hd10 sh44 m`22-  sghd10 case marker 
  tree  house O-marker smash broken   
  S  O V   

‘The tree smashed the house.’  

 b. rŸ22j`44 s∏hd10  üd22j∏ë22 sh44 m`22-  sghd10 case marker 
  tree O-marker  house smash broken   
  O  S V   

‘The house smashed the tree.’  

 
The morpheme sghd10 is the only available case marker for a wide range of semantic roles. It 

marks the direct object (O), the beneficiary (B) and a few other oblique semantic roles. It is used when 
an ambiguity between arguments arises and it is omitted when the argument roles are assigned by the 
predicate unambiguously. Several ditransitive predicates in Lolo can take three human arguments as in 
(13a). Since semantic roles are not assigned by word order, the degree of ambiguity is high if the 
particle sghd10 is not used. In (13a), there are 3! = 6 possible interpretations.  

 
(13) a. ')( Ö10ln22 Ö44mn22râ22 aÖ22kt10 cyŸ22 fâ10-
   mother name of man name of man hand over PRED:give 
   S/O/B O/S/B B/O/S V 

(i) ‘Mom handed Onose over to Bolu.’ (ii) ‘Mom handed Bolu over to Onose.’ (iii) ‘Bolu 
handed Mom over to Onose.’ (iv) ‘Bolu handed Onose over to Mom.’ (v) ‘Onose handed 
Mom over to Bolu.’ (vi) ‘Onose handed Bolu over to Mom.’  

 
This ambiguity can be resolved by a double use of the case particle sghd10. The double occurrence 

of sghd10 creates in turn a new ambiguity which is settled through word order. The first NP marked by 
sghd10 is the direct object and the second the beneficiary. In (13b) only the relative order of O and B is 
fixed. The S may freely occur in any word order slot as far as the relative order of O and B is respected.  

 
 b. Ö44mn22râ22 s∏hd10  Ö10ln22 aÖ22kt10 s∏hd10 cyŸ22 fâ10-
  name of man O-marker  mother name of man B-marker hand over PRED:give
  O  S B   

‘Mom handed Onose over to Bolu.’  

 
In these examples, the combinatorial properties of the predicate are closely related to the number 

of occurrences of the case marker sghd10. We will revisit the Lolo data in §6.4.  
 

2.4 The permutation group S4  

Valence is the linguistic term to refer to the number of core arguments a natural language predicate 
takes. Most languages involve morphological strategies (e.g. affixation) to permit changes of the basic 
valence of a predicate. Applicative and causative are the most common morphological strategies in 
languages of the world to increase the valence of a predicate (Whaley 1997). In languages in which the 
applicative or the causative are productive morphological processes, regular ditransitive predicates can 
be extended into “quadritransitive” (4-place) predicates. If in addition the language has free word order, 
then these quadritransitive predicates interact with the syntactic marking system.  

Lolo (see §2.3, Gerner 2008) involves a productive causative suffix (the morpheme mn44) that 
increases the valence of each predicate. For example, it transforms ditransitive predicates into 
quadritransitive predicates by adding the argument of causer. If the case marker sghd10 was not used, 
there would be 4! = 24 possible interpretations. However, Lolo curbs this extreme ambiguity by 
imposing the relative order CAUSER-CAUSEE so that there are only 24/2 = 12 possible interpretations.  
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  Lolo language (Tibeto-Burman family: Yunnan Province, P.R. of China) 
(14) a. )Ö10ln22  m`44cÂt22 Ö44mn22râ22
   mother  name of woman name of man 
   CAUSER/O/B  CAUSER/CAUSEE/O/B CAUSER/ CAUSEE/O/B 
   aÖ22kt10  cyŸ22 fâ10 mn44-
   name of man  hand over PRED:give PRED:cause
   CAUSEE/O/B  V 

(i) ‘Mother made Nadu hand Onose over to Bolu.’ (ii) ‘Mother made Nadu hand Bolu over to Onose.’ 
(iii) ‘Mother made Onose hand Nadu over to Bolu.’ (iv) ‘Mother made Bolu hand Nadu over to 
Onose.’ (v) ‘Mother made Onose hand Bolu over to Nadu.’ (vi) ‘Mother made Bolu hand Onose over 
to Nadu.’ (vii) ‘Nadu made Onose hand mother over to Bolu.’ (viii) ‘Nadu made Bolu hand mother 
over to Onose.’ (ix) ‘Onose made Bolu hand mother over to Nadu.’ (x) ‘Nadu made Onose hand Bolu 
over to mother.’ (xi) ‘Nadu made Bolu hand Onose over to mother.’ (xii) ‘Onose made Bolu hand 
Nadu over to mother.’  

 
Native Lolo would not use (14a) in communication due to its extreme ambiguity, but would 

postpose the case suffix s∏hd10 after the second, third and fourth NP. The resulting new ambiguity is 
then resolved through word order. The second NP is the CAUSEE, the third the direct object (O) and the 
fourth the beneficiary (B). The first NP which is not suffixed by s∏hd10 is the CAUSER.  

 
 b. Ö10ln22  m`44cÂt22 s∏hd10 Ö44mn22râ22 s∏hd10
  mother  name of woman CAUSEE-marker name of man O-marker 
  CAUSER  CAUSEE O 
  aÖ22kt10 s∏hd10  cyŸ22 fâ10 mn44-
  name of man B-marker  hand over PRED:give PRED:cause
  B  V 

‘Mom made Nadu hand Onose over to Bolu.’  

 
The permutation properties of the predicate influence thus the use of the case suffix s∏hd10 and the 

syntactic marking system as a whole. In §6.4, these data will be characterized with permutation groups.  
 

3. The insufficiency of mereological approaches  

In their survey monograph, Levin & Hovav (2005) review theories of argument realization and mention 
the mereological approach (e.g. Bach 1986; Krifka 1989, 1992; Vendler 1967) as a model of event 
classification by means of the inclusion properties that different subevents of a given event satisfy. The 
most famous classification proposed is that of the Vendlerian classes states, activities, accomplishment 
and achievement. Krifka (1989; 1992) replaced the last two terms by quantized and bounded activity.  

Although the mereological approach is successful in explaining several grammatical phenomena 
(notably the progressive and perfective aspects), it cannot account for the combinatorial properties 
sketched in the previous section. The reason for this failure is relatively straightforward. None of the 
morphemes and particles presented in §2 manifests its selectional restrictions in terms of Aktionsarten. 
To show this point, I shall restrict myself to the experiential and habitual aspect. Examples in (15), 
taken from the Kam language, illustrate that both aspects are compatible with states, atelic activities, 
quantized activities and bounded activities.  

 
(15) a. State 
  l`n22 rhm44 s`22 / jΩdm42. 
  3P SG clean EXP  HAB 

‘He experienced being clean. / He used to be clean.’  
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 b. Atelic activity 
  l`n22 k∫`j00 gn342 s`22 / jΩdm42. 
  3P SG steal thing, good EXP HAB 

‘He experienced stealing something. / He used to steal.’  

 c. Quantized activity 
  l`n22 h44 lÅm44 sÉh44 rh342 sâm42 ât20 s`22 / jΩdm42. 
  3P SG NUM:1 day eat NUM:4 CL:meal rice, food EXP  HAB 

‘He experienced eating four meals in one day. / He used to eat four meals in one day.’  

 d. Bounded activity 
  l`n22 râl22 câl44 i`n00 s`22 / jΩdm42.
  3P SG search notice 1P SG EXP HAB 

‘He experienced finding me. / He used to find me.’  

 
The selectional restrictions of the experiential and habitual aspects are not related to the 

mereological nature of Aktionsarten but to combinatorial notions, which are properties of sets of events 
not of single events. The theory that I develop is built on the mathematical notion of argument- 
permutation (Merris 2003).  

In §4, I demonstrate how this idea works for intransitive, monotransitive and ditransitive 
predicates. For each predicate type, we sketch its combinatorial properties in a Modal-Tense Predicate 
Logic with two intensional operators:  (necessity) and  (possibility). The formal language will be 
introduced in detail in §5.1. The notion of predicate-induced permutation group is defined in §5.2 and 
§5.3. In §6, we provide an account of the phenomena sketched in §2 based on permutation groups.  

 

4. The notion of permutations induced by natural language predicates  

Three points need to be clarified. First, the linguistic entities that a predicate can permute are semantic 
roles (e.g. agent, patient, recipient), syntactic roles (e.g. subject, object) and pragmatic roles (e.g. topic, 
comment). The theory proposed in this paper targets semantic roles; we hence only consider pairs of 
sentences like in (16a-b), not those in (17a-b) or (18a-b).  

 
(16)  Permutation of the thematic roles of agent and recipient 
 a. John gave Mary a book.  
 b. Mary gave John a book.  

 
(17)  Permutation of the syntactic roles of subject and (oblique) object 
 a. John blamed Mary.  
 b. Mary was blamed by John.  

 
(18)  Permutation of the pragmatic roles of topic and comment 
 a. (A: What about John?) B: As for John, he listened to Mary’s concert.  
 b. (A: What about Mary?) B: Mary gave a concert on the occasion of John’s birthday.  

 
Second, depending on the type of arguments it takes, the same predicate may exhibit different 

permutation properties. The verb beat, for instance, may take human and non-human NPs as direct 
object. For human NPs (e.g. John beats Bill), beat may permute its arguments (Bill beats John), 
whereas swapping a human subject and an inanimate object (John beats the carpet, *the carpet beats 
John) is illicit. It does not ensue, however, that we must distinguish beat as two lexemes in the lexicon, 
but that the permutation properties associate with two different subcategorization frames listed under 
the lexeme beat.  

Third, the availability of permutations hinges on the relatedness of the two referring events. The 
events Bill buries John and John buries Bill are both conceivable as two independent events, but cannot 
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occur as two events that grow out of each other. We therefore distinguish permutations of arguments in 
dependent events and in independent events both informing us about logical properties of the predicate.  

4.1 Intransitive Predicates  

For intransitive predicates, there is only one permutation (the function that maps the sole argument onto 
itself). It generates the following repeatability properties. The modal operators  and  stand for 
universal and existential quantifiers of scenarios, an acronym of time-world pairs. (The scope of the 
operators  and  is indicated by square brackets.)  

 
(19) a. μ-ambiguous (AMBI-μ): ∀x [ P(x) ∧ P(x)] μ: {x} → {x} 

 b. Unrepeatable (NON-μ): ∀x [P(x) → ¬P(x)]     x  →  x 
 c. Weak-repeatable (WEAK-μ): ∀x [P(x) → P(x) ∧ ¬P(x)]  
 d. Strong-repeatable (STRONG-μ): ∀x [P(x) → P(x)]  

 
For intransitive predicates, the property AMBI-μ in (19a) is a tautology, whereas NON-μ, WEAK-μ 

and STRONG-μ in (19b-d) are non-trivial. As an illustration, the predicate ‘sleep’ in (20) is WEAK-μ 
(weak-repeatable). If someone has slept for two days in one scenario (at one given time t and in one 
given world w), then this scenario may evolve in at least two ways: it will develop into another scenario 
in which the person sleeps again for two days, or it will morph into a scenario in which s/he does not.  

 
  Kam language (Kam-Tai family: Guizhou Province, P.R. of China)  
(20)  l`n22 m`j44 i`00 lÅm44 s`22 . jΩdm42. P weak-repeatable 
  3P SG sleep NUM:2 day EXP HAB (P stage-level) 

‘He experienced sleeping for two days. / He used to sleep for two days.’  

 
The notions of weak/strong-repeatable are reminiscent of the concepts of stage-level and 

individual-level developed by Kratzer (1995; see also Carlson 1977). Kratzer developed this distinction 
primarily as a temporal (Davidsonian event) notion, whereas in my view the modal component is the 
crucial feature of predicates to theorize upon. Four permutation sets can be associated with a given P.  

 
(21) Definition (Permutation sets of intransitive predicates):  

 a. Sambi(P) = {μ: {x} → {x} | μ bijective, AMBI-μ(P)}; 

 b. Snon(P) = {μ: {x} → {x} | μ bijective, NON-μ(P)}; 
 c. Sweak(P) = {μ: {x} → {x} | μ bijective, WEAK-μ(P)}; 
 d. Sstrong(P) = {μ: {x} → {x} | μ bijective, STRONG-μ(P)}. 

 
(22) Examples: a. For P: sâh44 ‘die’ in the Kam language, we have  

• Snon(P) = {μ: {x} → {x}}  
• Sweak(P) = ∅  
• Sstrong(P) = ∅  

b. For P: jn44 ‘laugh’ in the Kam language, we have 
• Snon(P) = ∅  
• Sweak(P) = {μ: {x} → {x}}  
• Sstrong(P) = ∅  

c. For P: o∏`ì24 ‘high’ in the Kam language, we have 
• Snon(P) = ∅  
• Sweak(P) = ∅  
• Sstrong(P) = {μ: {x} → {x}}.  
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4.2 Monotransitive Predicates  

A monotransitive predicate P is sensitive to two permutations, the identity permutation and the 
symmetry permutation, written as bijections τ: {x,y} → {x,y} (where x and y are arbitrary arguments). 
For each permutation τ, we introduce two types of measures that express P’s ability to permute 
arguments: one in two unrelated events, the other in two consecutive events. The first property is 
abbreviated as AMBI-τ whereas the second property is patterned through NON-τ, WEAK-τ, STRONG-τ.  

 
(23) a. τ1-ambiguous (AMBI-τ1): ∀x,y [ P(x, y) ∧ P(x, y)] τ1: {x,y} → {x,y}

 b. 
c. 
d. 

Unrepeatable (NON-τ1): 
Weak-repeatable (WEAK-τ1): 
Strong-repeatable (STRONG-τ1):

∀x,y [P(x, y) → ¬P(x, y)] 
∀x,y [P(x, y) → P(x, y) ∧ ¬P(x, y)] 
∀x,y [P(x, y) → P(x, y)] 

    x  →   x 
    y  →   y 

(24) a. τ2-ambiguous (AMBI-τ2): ∀x,y [ P(x, y) ∧ P(y, x)] τ2: {x,y} → {x,y}

 b. 
c. 
d. 

Asymmetric (NON-τ2): 
Weak-symmetric (WEAK-τ2): 
Strong-symmetric (STRONG-τ2):

∀x,y [P(x, y) → ¬P(y, x)] 
∀x,y [P(x, y) → P(y, x) ∧ ¬P(y, x)] 
∀x,y [P(x, y) → P(y, x)] 

    x  →   y 
    y  →   x 

 
As illustrated in §2.1, repeatability properties related to the permutation τ1 interact with the 

experiential (Kam: s`22) and habitual aspects (Kam: jΩdm42). Both aspects match with weak-repeatable 
predicates, but are incompatible with unrepeatable and strong-repeatable predicates. Moreover, as 
shown in §2.2, reciprocal constructions manifest selectional restrictions captured by the symmetry 
properties of the predicate (associated with the permutation τ2). Reciprocal anaphors are compatible 
with weak- and strong-symmetric predicates, but illicit with asymmetric predicates.  

In analogy to (21), we can define four permutation sets for each monotransitive predicate P and 
each pair of NP arguments x and y. The set Sambi(P) can be viewed as a measure of licit permutations 
realized in unconnected events, while Snon(P), Sweak(P) and Sstrong(P) gauge permutations realized in 
successive events. A permutation τ: {x,y} → {x,y} will be in exactly one of the three permutation sets 
Snon(P), Sweak(P) and Sstrong(P).  

 
(25) Definition (Permutation sets of monotransitive predicates):  

 a. Sambi(P) = {τ: {x,y} → {x,y} | τ bijective, AMBI-π(P)};  

 b. Snon(P) = {τ: {x,y} → {x,y} | τ bijective, NON-π(P)};  
 c. Sweak(P) = {τ: {x,y} → {x,y} | τ bijective, WEAK-π(P)};  
 d. Sstrong(P) = {τ: {x,y} → {x,y} | τ bijective, STRONG-π(P)}.  

 
(26) Examples: a. For P: lnj44 ‘bury’ in the Kam language, we have 

• Sambi(P) = {τ1, τ2}  
• Snon(P) = {τ1, τ2}  
• Sweak(P) = ∅  
• Sstrong(P) = ∅  

b. For P: k`ì02 ‘open’ in the Kam language, we have 
• Sambi(P) = {τ1}  
• Snon(P) = {τ2}  
• Sweak(P) = {τ1}  
• Sstrong(P) = ∅  
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c. For P: i`n02 ‘fear’ in the Kam language, we have 
• Sambi(P) = {τ1, τ2}  
• Snon(P) = ∅  
• Sweak(P) = {τ1, τ2}  
• Sstrong(P) = ∅  

d. For P: k`n20 ‘old(er)’ in the Kam language, we have 
• Sambi(P) = {τ1, τ2}  
• Snon(P) = {τ2}  
• Sweak(P) = ∅  
• Sstrong(P) = {τ1}  

e. For P: Énì212 ‘resemble (in permanency reading)’ in the Kam language, we have 
• Sambi(P) = {τ1, τ2}  
• Snon(P) = ∅  
• Sweak(P) = ∅  
• Sstrong(P) = {τ1, τ2}.  

 

4.3 Ditransitive Predicates  

For three arguments x, y, z, there are exactly six possible permutations. Each permutation generates 
again four properties that a given ditransitive predicate P either satisfies or rejects.  

 
(27) a. AMBI-π1-compatible: ∀x,y,z [ P(x, y, z) ∧ P(x, y, z)] π1: {x,y,z} → {x,y,z}
 b. 

c. 
d. 

NON-π1-compatible: 
WEAK-π1-compatible: 
STRONG-π1-compatible: 

∀x,y,z [P(x, y, z) → ¬P(x, y, z)] 
∀x,y,z [P(x, y, z) → P(x, y, z) ∧ ¬P(x, y, z)] 
∀x,y,z [P(x, y, z) → P(x, y, z)] 

      x  →   x 
      y  →   y 
      z  →   z 

(28) a. AMBI-π2-compatible: ∀x,y,z [ P(x, y, z) ∧ P(x, z, y)] π2: {x,y,z} → {x,y,z}
 b. 

c. 
d. 

NON-π2-compatible: 
WEAK-π2-compatible: 
STRONG-π2-compatible: 

∀x,y,z [P(x, y, z) → ¬P(x, z, y)] 
∀x,y,z [P(x, y, z) → P(x, z, y) ∧ ¬P(x, z, y)] 
∀x,y,z [P(x, y, z) → P(x, z, y)] 

      x  →   x 
      y  →   z 
      z  →   y 

(29) a. AMBI-π3-compatible: ∀x,y,z [ P(x, y, z) ∧ P(y, x, z)] π3: {x,y,z} → {x,y,z}
 b. 

c. 
d. 

NON-π3-compatible: 
WEAK-π3-compatible: 
STRONG-π3-compatible: 

∀x,y,z [P(x, y, z) → ¬P(y, x, z)] 
∀x,y,z [P(x, y, z) → P(y, x, z) ∧ ¬P(y, x, z)] 
∀x,y,z [P(x, y, z) → P(y, x, z)] 

      x  →   y 
      y  →   x 
      z  →   z 

(30) a. AMBI-π4-compatible: ∀x,y,z [ P(x, y, z) ∧ P(y, z, x)] π4: {x,y,z} → {x,y,z}
 b. 

c. 
d. 

NON-π4-compatible: 
WEAK-π4-compatible: 
STRONG-π4-compatible: 

∀x,y,z [P(x, y, z) → ¬P(y, z, x)] 
∀x,y,z [P(x, y, z) → P(y, z, x) ∧ ¬P(y, z, x)] 
∀x,y,z [P(x, y, z) → P(y, z, x)] 

      x  →   y 
      y  →   z 
      z  →   x 

(31) a. AMBI-π5-compatible: ∀x,y,z [ P(x, y, z) ∧ P(z, x, y)] π5: {x,y,z} → {x,y,z}
 b. 

c. 
d. 

NON-π5-compatible: 
WEAK-π5-compatible: 
STRONG-π5-compatible: 

∀x,y,z [P(x, y, z) → ¬P(z, x, y)] 
∀x,y,z [P(x, y, z) → P(z, x, y) ∧ ¬P(z, x, y)] 
∀x,y,z [P(x, y, z) → P(z, x, y)] 

      x  →   z 
      y  →   x 
      z  →   y 
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(32) a. AMBI-π6-compatible: ∀x,y,z [ P(x, y, z) ∧ P(z, y, x)] π6: {x,y,z} → {x,y,z}
 b. 

c. 
d. 

NON-π6-compatible: 
WEAK-π6-compatible: 
STRONG-π6-compatible: 

∀x,y,z [P(x, y, z) → ¬P(z, y, x)] 
∀x,y,z [P(x, y, z) → P(z, y, x) ∧ ¬P(z, y, x)] 
∀x,y,z [P(x, y, z) → P(z, y, x)] 

      x  →   z 
      y  →   y 
      z  →   x 

 
The following examples illustrate the most common permutation patterns of ditransitive predicates 

attested in natural languages.  
 

  Kam language (Kadai family: Guizhou Province, P.R. of China)  
(33)  l`n22

3P SG 
rn212
dry 

vnì342 
bucket 

mÅl20
water 

s`ì00
CL 

i`42
field

„`22-
DEM:DIST 

P is AMBI-π1
P is NON-π1,-π2,-π3,-π4,-π5,-π6 

‘He dried the field of water with a bucket (i.e. water was removed from the filed to dry it).’  

(34)  mâh20
mother 

iâm20
lead, bring 

k`j20
son 

s∏ât342
PREP 

sÉt00
CL 

√`44. 
river 

P is AMBI-π1,-π3
P is NON-π2,-π4,-π5,-π6  
P is WEAK-π1,-π3 

‘The mother brought her son to a river.’  

(35)  l`n22
3P SG 

o∏∫`24
feed 

jΩ`ì212 
bowl 

ât20
rice 

√`00-
2P SG 

 P is AMBI-π1,-π6
P is NON-π2,-π3,-π4,-π5  
P is WEAK-π1,-π6 

‘He feeds you with a bowl of rice.’  

  Lolo language (Tibeto-Burman family: Yunnan Province, P.R. of China) 
(36)  Ö44mn22râ22 s∏hd10 Ö10ln22 aÖ22kt10 s∏hd10  
  name of man O-marker mother name of man B-marker P is AMBI-π1,-π2,-π3,-π4,-π5,-π6
  cyŸ22 fâ10-  P is WEAK-π1,-π2,-π3,-π4,-π5,-π6
  hand over PRED:give   

‘Mom handed Onose over to Bolu.’  

  English  

(37)  Boston is closer to New York than to Los Angeles.6 P is AMBI-π1,-π2,-π3,-π4,-π5,-π6
P is NON-π2,-π4,-π5 
P is STRONG-π1,-π3,-π6 

 
In analogy to (21) and (25), we can model four permutation sets for each ditransitive predicate P, 

Sambi(P), Snon(P), Sweak(P) and Sstrong(P).  
 

(38) Definition (Permutation sets of ditransitive predicates):  

 a. Sambi(P) = {π: {x,y,z} → {x,y,z} | π bijective, AMBI-π(P)};  

 b. Snon(P) = {π: {x,y,z} → {x,y,z} | π bijective, NON-π(P)};  
 c. Sweak(P) = {π: {x,y,z} → {x,y,z} | π bijective, WEAK-π(P)};  
 d. Sstrong(P) = {π: {x,y,z} → {x,y,z} | π bijective, STRONG-π(P)}. 

 
In addition to examples (33)-(37), consider the permutations sets of the following predicates.  
 

                                                 
6 The predicate P: closer is NON-π2,-π4,-π5 and STRONG-π1,-π3,-π6 if the geographic positions of the three arguments are like 
for “Boston”, “New York” and “Los Angeles” in the real world. These permutations properties, however, may not hold if the 
geographic positions are different. The predicate P: closer is an ambiguous lexeme that covers several geographic relations. 
The permutation properties can be stated clearly to the extent that these geographic relations are specified.  
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(39) Examples: a. For P: rn212 ‘dry’ in the Kam language, we have  
• Sambi(P) = {π1}  
• Snon(P) = {π1, π2, π3, π4, π5, π6}  
• Sweak(P) = ∅  
• Sstrong(P) = ∅  

b. For P: iâm20 ‘lead’ in the Kam language, we have  
• Sambi(P) = {π1, π3}  
• Snon(P) = {π2, π4, π5, π6}  
• Sweak(P) = {π1, π3}  
• Sstrong(P) = ∅. 

c. For P: o∏∫`24 ‘feed’ in the Kam language, we have  
• Sambi(P) = {π1, π6}  
• Snon(P) = {π2, π3, π4, π5}  
• Sweak(P) = {π1, π6}  
• Sstrong(P) = ∅  

d. For P: cyŸ22 ‘hand over’ in the Lolo language, we have 
• Sambi(P) = {π1, π2, π3, π4, π5, π6}  
• Snon(P) = ∅  
• Sweak(P) = {π1, π2, π3, π4, π5, π6}  
• Sstrong(P) = ∅.  

e. For P: closer in English, we have  
• Sambi(P) = {π1, π2, π3, π4, π5, π6}  
• Snon(P) = {π2, π4, π5}  
• Sweak(P) = ∅  
• Sstrong(P) = {π1, π3, π6}. 

 

5. Mathematical properties of predicate-induced permutations 

In §5.1, I develop the logical meta-language in which permutations are formalized. In §5.2, I define the 
generic form of permutation properties for n-place predicates and in §5.3, I elaborate on the notion of 
permutation group of degree n.  

 

5.1 The Language MTPL (Modal-Tense Predicate Logic)  

The notion of argument permutation requires a temporal and a modal component. The inclusion of both 
parameters in one analysis is of course not a new idea but has been routinely applied to linguistics since 
Dowty (1979)’s work on the English progressive aspect. However, in Dowty’s original approach and in 
that of a few other scholars the exact relationship between time and possible worlds was left undefined. 
In this paper, I adopt the notion of T×W-frames. In modal logic, there are two ways of interpreting 
formulas through times and possible worlds. One involves Kamp-frames and the other T×W-frames (cf. 
Thomason 1984, Wölfl 1999). Both formalizations differ on the question of whether the ordering of 
times is world-dependent or not. For Kamp-frames the ordering of times is world-dependent and for 
T×W-frames it is world-independent. Let MTPL be the language of modal predicate logic with two 
intensional operators  (necessity) and  (possibility) (see Hintikka 1969). A model of MPL is a triple 
M = <D, T×W, F> such that  
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(40) Definition: a. D is a set of individuals;  
b. T×W is a T×W-frame, i.e. a structure (W, T, <, ≈) where W and T are disjoint 

non-empty sets of possible worlds and time points;  
- (T, <) a linear, irreflexive and transitive order;  
- T is open (in the sense of topology, i.e. it has no terminal point);  
- ≈ is a relation in T × W × W such that  

• for all t ∈T ≈t is an equivalence relation;  
• for all t, t' ∈ T and w, w' ∈ W, if w ≈t w' and t' < t then w ≈t' w'; 

 
In traditional modal predicate logic, constants and variables are interpreted not as referring to plain 

individuals but to “individual concepts” (see, for example, Aloni 2005: 508). Individual concepts are 
maps from time-world pairs (t, w) in T×W, called scenarios, to individuals in D.  

 
 c. F is a functor which maps each non-logical constant to interpretations:  

- For each constant c, F(c): T×W → D is an assignment function;  
- For each n-ary predicate symbol P, F(P): D n → ℘(T×W);  

 
Propositions are interpreted in a model M with respect to scenarios (t, w), and an assignment 

function g, mapping variables to individual concepts in DT×W.  
 

(41) Definition: a. (t, w) ⊨M,g P(x1,…,xn) iff (t, w) ∈ F(P)(g(x1),…,g(xn))  
b. (t, w) ⊨M,g ¬φ iff not (t, w) ⊨M,g ¬φ  
c. (t, w) ⊨M,g φ ∧ ψ iff both (t, w) ⊨M,g φ and (t, w) ⊨M,g ψ;  
d. (t, w) ⊨M,g φ ∨ ψ iff either (t, w) ⊨M,g φ or (t, w) ⊨M,g ψ or both;  
e. (t, w) ⊨M,g φ → ψ iff if (t, w) ⊨M,g φ then (t, w) ⊨M,g ψ;  
f. (t, w) ⊨M,g ∃xφ iff there is d ∈ DT×W such that (t, w) ⊨M,g[x/d] φ;  
g. (t, w) ⊨M,g ∀xφ iff for all d ∈ DT×W it is the case that (t, w) ⊨M,g[x/d] φ.  

 
The notion of T×W-frame induces a canonical accessibility relation on T×W.  
 

(42) Definition (Canonical Accessibility Relation):  

(t, w) < (t', w') iff t < t' and w ≈t w'.  
 
Having specified the canonical accessibility relation of the model M, we are equipped to interpret 

the intensional formulas.  
 

(41) Definition: h. (t, w) ⊨M,g φ iff for all (t', w'): if (t, w) < (t', w') then (t', w') ⊨M,g φ  
i. (t, w) ⊨M,g φ iff there is (t', w') such that (t, w) < (t', w') and (t', w') ⊨M,g φ.  

 
For a given model M of MTPL and an assignment function g, we will use the following 

abbreviation:  
 

(43) Abbreviation: (t, w) ⊨ φ for (t, w) ⊨M,g φ.  

 
This interpretation with scenarios can be illustrated for the following monotransitive predicate in 

the Kam language. The kinship predicate NONGX is strong-repeatable and asymmetric (the string 
NONGX in the romanized Kam orthography is pronounced as mnì20). The predicate NONGX covers the 
English kinship terms ‘younger brother’, ‘younger sister’ and ‘younger cousin’ (Geary et al. 2003: 93).7 
                                                 
7 The Kam kinship system is reminiscent of the Eskimo and Hawaiian naming systems in anthropology. In the same 
generation of EGO, there is no distinction made between the sex of kins and between parallel and cross cousins. The only 
lexicalized feature is the relative age of the kin in relation to EGO.  
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The predicate NONGX is strong-repeatable. Suppose that Bill is John’s NONGX in scenario (t, w), then in 
any scenario (t', w') accessible from (t, w) Bill is still John’s NONGX. The predicate is asymmetric for 
the following reason. If in one scenario (t, w) Bill is the NONGX of John, then there is no scenario (t', w') 
which grows out of (t, w) and in which John is the NONGX of Bill.  

 

5.2 Argument-permutation properties and permutation sets of degree n  

The form of permutation properties for intransitive, monotransitive and ditransitive predicates is 
transparent from §4 and can be generalized into the following data. Let the following entities be given  

 
a. for a natural number n,  

• an n-place predicate P  
• n arguments x1,…,xn 

b. a bijective function π: {1,…,n} → {1,…n} (also called permutation).  
 
We define four argument-permutation properties: AMBI-π(P), NON-π(P), WEAK-π(P), STRONG-π(P). 

The property AMBI-π(P) expresses that arguments can undergo π-permutation in two unrelated       
(= independent) events, while NON-π(P), WEAK-π(P) and STRONG-π(P) state the necessity or possibility 
of π-permuted arguments in two consecutive (= dependent) events. The property AMBI-π(P) measures 
the ambiguity with which semantic roles are syntactically encoded by the predicate P.  

 
(44) Definition (Generic form of argument-permutation properties):  

 a. AMBI-π-compatible: ∀x1…∀xn [ P(x1,…,xn) ∧ P(xπ(1),…,xπ(n))] 

 b. NON-π-compatible: ∀x1…∀xn [P(x1,…,xn) → ¬P(xπ(1),…,xπ(n))] 
 c. WEAK-π-compatible: ∀x1…∀xn [P(x1,…,xn) → P(xπ(1),…,xπ(n)) ∧ ¬P(xπ(1),…,xπ(n))]
 d. STRONG-π-compatible: ∀x1…∀xn [P(x1,…,xn) → P(xπ(1),…,xπ(n))] 

 
These second order predicates satisfy several properties. In (45a), they satisfy a dependency 

entailment: if a predicate can π-permute its arguments in two dependent events, then it can π-permute 
them also in two independent events. Propositions (45b+c) state that a predicate either cannot 
π-permute its arguments, weakly permutes its arguments or strongly permutes its arguments. Let P, 
x1,…,xn and bijection π: {1,…,n} → {1,…n} be arbitrary.  

 
(45) Theorem: a. Dependency entailment: We have [WEAK-π(P) or STRONG-π(P)] ⇒ AMBI-π(P).  

b. Cumulatively exhaustive: We have NON-π(P) or WEAK-π(P) or STRONG-π(P).  

c. Mutually exclusive: We have  
• NON-π(P) ⇒ not WEAK-π(P) and not STRONG-π(P),  
• WEAK-π(P) ⇒ not NON-π(P) and not STRONG-π(P),  
• STRONG-π(P) ⇒ not NON-π(P) and not WEAK-π(P).  

Proof: See appendix. 
 
Any of the following sets is called permutation sets of degree n.  
 

(46) Definition:  

 a. Sambi(P) = {π: {1,…,n} → {1,…,n} | π bijective, AMBI-π(P)};  

 b. Snon(P) = {π: {1,…,n} → {1,…,n} | π bijective, NON-π(P)};  
 c. Sweak(P) = {π: {1,…,n} → {1,…,n} | π bijective, WEAK-π(P)};  
 d. Sstrong(P) = {π: {1,…,n} → {1,…,n} | π bijective, STRONG-π(P)}. 
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The set {π: {1,…,n} → {1,…,n} | π bijective} of all permutations of degree n is denoted by Sn in 
the mathematical literature and has the cardinality n! (see Merris 2003: 141). (45b+c) guarantee that 
Snon(P), Sweak(P) and Sstrong(P) provide a partition of Sn, i.e. that their mutually disjoint union is Sn.  

 

5.3 Predicate-induced permutation groups of degree n  

In mathematical combinatorics, Sn can be viewed as exhibiting an algebraic group structure supplied by 
function composition.  

 
(47) Definition: A group (G, ◦) is a non-empty set G together with a function ◦: G × G → G satisfying 

the following laws:  
a. Law of associativity: ∀f,g,h ∈ G,  f ◦ (g ◦ h) = (f ◦ g) ◦ h, 
b. Law of neutral element: ∃e ∈ G, ∀f ∈ G,  e ◦ f = f ◦ e = f, 
c. Law of inverse element: ∀f ∈ G, ∃f -1 ∈ G,  f ◦ f -1 = f -1 ◦ f = e.  

 
(48) Example: For Sn we can define ◦: Sn × Sn → Sn  

(π, μ) → π ◦ μ: {1,…,n} → {1,…,n}  
k    → π(μ(k))  

(Sn, ◦) is a group with εn, the identity permutation, as the neutral element.  
 
Let us define the concept of a subgroup.  
 

(49) Definition: Let (G, ◦) be a group and U ⊆ G a non-empty subset. We say that (U, ◦) is a subgroup 
of (G, ◦) iff  

a. U is closed under ◦ (i.e. ∀f,g ∈ U, f ◦ g ∈ U) inducing ◦|U : U × U → U,  
b. (U, ◦|U) is a group.  

 
From this point on, our primary interest will be to investigate conditions under which Sambi(P), 

Snon(P), Sweak(P) and Sstrong(P) are subgroups of Sn. The subgroups of Sn are called permutation group 
of degree n. Let us demonstrate the following lemma.  

 
(50) Lemma: If G ⊆ Sn is a non-empty subset that is closed under function composition, then (G, ◦) is 

a subgroup of (Sn, ◦).  

Proof: See appendix. 
 

(51) Example: S3 consists of 6 elements (§3.3). There are 26 = 64 subsets of S3 and 63 non-empty 
subsets. However, only six of them are closed. Besides S3, there are only five proper 
subgroups of S3: {ε3}, {ε3, (2,1,3)}, {ε3, (3,2,1)}, {ε3, (1,3,2)}, {ε3, (2,3,1), (3,1,2)}. If 
we involve the format used in §3.3, we can also give the five proper subgroups as {π1}, 
{π1, π3}, {π1, π6}, {π1, π2}, {π1, π4, π5}.  

 
We can show that Sambi(P) is always a permutation group of degree n. 
 

(52) Lemma: Sambi(P) ⊆ Sn is always a subgroup of (Sn, ◦).  

Proof: See appendix. 
 
Generally, it is not the case that Snon(P), Sweak(P) and Sstrong(P) are subgroups of Sn. The next 

result we can establish relates to Sstrong(P).  
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(53) Lemma: Sstrong(P) ⊆ Sn is either empty or a subgroup of (Sn, ◦).  

Proof: See appendix. 
 
Now it is obvious that if Sstrong(P) ⊆ Sn is a non-empty subgroup, Sweak(P) and Snon(P) cannot be 

subgroups of Sn because the neutral element εn would belong to Sstrong(P) and thus could not be 
element of Sweak(P) and Snon(P). For Sweak(P) there seems to be a similar result as lemma (53).  

 
(54) Lemma: Sweak(P) ⊆ Sn is either empty or a subgroup of (Sn, ◦). 

Proof: See appendix. 
 
From lemma (53) and lemma (54), we can deduce the following theorem.  
 

(55) Theorem of Predicate-Induced Permutation Groups of Degree n:  

Let n ≥ 1 and P be an n-place predicate. The following three mutually exclusive cases hold:  
 a. Sstrong(P) ⊆ Sn is a non-empty subgroup of (Sn, ◦) and Sweak(P) = ∅;  

b. Sstrong(P) = ∅ and Sweak(P) ⊆ Sn is a non-empty subgroup of (Sn, ◦);  
c. Sstrong(P) = ∅, Sweak(P) = ∅ and Snon(P) = Sn.  

 
This pattern is exactly reflected in the examples of specific predicates that we illustrated in §4, see 

(22), (26), (39). Note that for (55a) and (55b), we do not state anything about Snon(P) which can be 
empty or non-empty. The important detail to keep in mind is that in both cases Snon(P) cannot form a 
subgroup of (Sn, ◦). Snon(P) becomes a subgroup only in case (55c).  

 

6. Permutation groups inform grammaticality judgments  

The formal insights of §5 permit to represent natural language properties in terms of permutation 
groups. We revisit the language phenomena of §2 in order.  

 

6.1 Quantificational aspect constrained by Sweak(P) ≠ ∅  

According to §2.1, the experiential and habitual aspect particles can be appended to a sentence in the 
Kam language if and only if the predicate of the sentence is weak-repeatable. As the idea of 
repeatability is associated with the identity permutation in two dependent (= consecutive) events, we 
can formulate the rule for quantificational aspect as follows.  

 
(56) Grammaticality constraint on quantificational aspect:  

An n-place predicate P is grammatically compatible with an experiential/habitual aspect operator 
if and only if Sweak(P) is a non-empty permutation subgroup of Sn.8

 

                                                

 

6.2 Inverse marking constrained by Sambi(P) = S2  

In Kutenai and other Algonquian languages, inverse marking is a reversal system of subject/object 
marking only available if the sentence predicate allows arguments to undergo the identity and 
symmetry permutations in two independent events. This constraint is thus associated with the 
permutation group Sambi(P).  

 
 
 

 
8 Because of theorem (55), this condition is equivalent to the requirement εn ∈ Sweak(P).  
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(57) Grammaticality constraint on inverse marking:  

A monotransitive predicate P is grammatically compatible with inverse marking if and only if 
Sambi(P) = S2.  
 

6.3 Reciprocal constructions constrained by Sweak(P) / Sstrong(P) = S2  

Virtually all languages have reciprocal constructions built on a reciprocal anaphor or a reciprocal verb 
affix. Reciprocal constructions always involve two dependent events or relations, one in which two 
arguments occur in a certain order, the other in which they are arranged in symmetric order. Reciprocal 
constructions are thus associated with Sweak(P) or Sstrong(P).  

 
(58) Grammaticality constraint on reciprocal constructions:  

A monotransitive predicate P is grammatically compatible with reciprocal constructions if and 
only if Sweak(P) = S2 or Sstrong(P) = S2.  
 
It is not adequate to characterize reciprocal constructions in terms of the permutation group 

Sambi(P). For the predicate P: bury, for example, we have Sambi(P) = S2, but P cannot be fed into a 
reciprocal construction (i.e. bury each other).  

 

6.4 Free word order languages constrained by | Sambi(P) |  

In free word order languages, ambiguity between (human) NP arguments is resolved through case 
marking. Lolo (§2.3 and §2.4) is special in that it involves case marking (sghd10) only if there is 
ambiguity between arguments or, put differently, if the predicate allows permutations of its arguments 
in independent events. Case marking (sghd10) in Lolo hence depends on Sambi(P) and its cardinality. 
According to §2.3 and §2.4, four cases must be distinguished.  

 
(59) Grammaticality constraint on simple clauses:  

A predicate P in Lolo conditions case-marking in the following way:  
a. If | Sambi(P) | = 1, then sghd10 need not be involved; if involved, it functions as focus marker.
b. If | Sambi(P) | = 2, then sghd10 is used as case marker once after the NP identified as the direct 

object (O); it does not function as focus marker.  
c. If | Sambi(P) | = 6, then sghd10 is used as case marker twice after two noun phrases; the direct 

object (O) is the first NP marked by sghd10 and the beneficiary (B) the second.  
d. If | Sambi(P) | = 12, then sghd10 is used after the second, third and fourth NP; the first NP not 

marked by s∏hd10 is the CAUSER, the second NP is the CAUSEE, the third NP is the direct 
object (O) and the fourth NP the beneficiary (B).  

 

7. Conclusion  

This paper develops mathematical tools for combinatorial phenomena of natural languages. Each 
sentence predicate correlates with two finite permutation groups which measure the predicate’s ability 
of permuting its NP arguments in two independent events (first group) and in two dependent events 
(second group). These permutation groups conceptualize complex grammaticality phenomena that 
previously were not identified to be combinatorial in nature.  

At a methodological level, the paper started by cataloguing several linguistic combinatorial 
phenomena (quantificational aspect, inverse marking, free word order languages). It proposes to view 
these phenomena as mathematical combinatorial problems for which it develops a mathematical 
representation theorem (see 55). This theorem is reinterpreted in natural language data in a way that 
enlightens the description of grammaticality properties.  

The work presented in this paper naturally extends in a number of ways. Linguistically, we may 
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look for syntactic devices that push the dimension of the permutation group into a higher range. (In this 
paper, the highest dimension of permutation groups backed up by natural language data is four.) Serial 
verb constructions are syntactic devices that exist in many language families of the world except for 
Indo-European (Aikhenvald 2006). Serial verb constructions consist of two or more predicates whose 
semantic relation is not morphologically marked with conjunctions. Some of these constructions are 
“typed” in the sense that one predicate, as a result of grammaticalization, triggers the presence of a 
second predicate. These predicate pairs can be viewed as single complex predicates that take up to four 
or five arguments. The kind of permutation group associated with this complex predicate could capture 
important linguistic properties of serial verb constructions (e.g. argument sharing).  

Furthermore, other combinatorial notions could be launched following the ideas developed in this 
paper. I mentioned equivalence relations at the beginning of §1 which are defined as reflexive, 
symmetric and transitive relations. The traditional definition of a transitive relation R is: R(X, Y) and 
R(Y, Z) implies R(X, Z). In natural languages, there are at least three types of transitive relations which 
can be modeled by the concepts of NON, WEAK and STRONG proposed in this paper.  

 
(60)  Father is NON-transitive  
 a. John is Bill’s father.  
 b. Bill is Peter’s father. 
 c. John is Peter’s father.  

 
(61)  Beat is WEAK-transitive  
 a. John beats Bill. 
 b. Bill beats Peter. 
 c. John beats Peter.  

 
(62)  Older is STRONG-transitive  
 a. John is older than Bill. 
 b. Bill is older than Peter. 
 c. John is older than Peter.  
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Appendix 

In this section, I provide mathematical proofs of results contained in the main text. To facilitate the 
reading of the paper, the proofs were not included there.  
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(45) Theorem: a. Dependency entailment: We have [WEAK-π(P) or STRONG-π(P)] ⇒ AMBI-π(P).  

b. Cumulatively exhaustive: We have NON-π(P) or WEAK-π(P) or STRONG-π(P).  

c. Mutually exclusive: We have  
• NON-π(P) ⇒ not WEAK-π(P) and not STRONG-π(P),  
• WEAK-π(P) ⇒ not NON-π(P) and not STRONG-π(P),  
• STRONG-π(P) ⇒ not NON-π(P) and not WEAK-π(P).  

 
Proof: a. Dependency inclusion:  

• Suppose WEAK-π(P). Natural language predicates have the basic function of 
predicating over NP arguments. For all x1…xn there is thus (t, w) such that 
(t, w) ⊨ P(x1,…,xn). From the definition of WEAK-π(P), it follows that there is a 
scenario (t', w') with (t, w) < (t', w') such that (t', w') ⊨ P(xπ(1),…,xπ(n)). From 
this, we may conclude that AMBI-π(P).  

• Suppose STRONG-π(P). Again, for all x1…xn there is a scenario (t, w) such that 
(t, w) ⊨ P(x1,…,xn). All we need to continue in our argumentation is to assume 
that there is another (t', w') accessible through (t, w). This is warranted because 
T is topologically open as assumed in (38b). From the definition of 
STRONG-π(P), it follows that for (t', w') we have (t', w') ⊨ P(xπ(1),…,xπ(n)). We 
may thus conclude that AMBI-π(P).  

b. Cumulatively exhaustive: Suppose that (t, w) ⊨ P(x1,…,xn) for an arbitrary scenario 
(t, w). P either satisfies STRONG-π(P) or does not satisfy it. Suppose that it does not 
satisfy it. It follows that there is (t', w') such that (t, w) < (t', w') and (t', w') ⊨
¬P(xπ(1),…,xπ(n)). There are then two cases that need to be distinguished: either for 
all (t'', w'') with (t, w) < (t'', w'') we have (t'', w'') ⊨ ¬P(xπ(1),…,xπ(n)), in which case 
it follows that NON-π(P), or there is another (t'', w'') with (t, w) < (t'', w'') and 
(t'', w'') ⊨ P(xπ(1),…,xπ(n)), in which case we have WEAK-π(P). In case that the 
premise does not hold we have STRONG-π(P).  

c. Mutually exclusive: Suppose that (t, w) ⊨ P(x1,…,xn) for an arbitrary scenario (t, w).
• If NON-π(P), then for all (t', w') with (t, w) < (t', w') we have (t', w') ⊨

¬P(xπ(1),…,xπ(n)). From the definition of the weak and strong properties, it 
ensues that not WEAK-π(P) and not STRONG-π(P).  

• If WEAK-π(P), there are two scenarios (t', w') and (t'', w'') with (t, w) < (t', w') 
and (t, w) < (t'', w'') such that (t', w') ⊨ P(xπ(1),…,xπ(n)) and (t'', w'') ⊨
¬P(xπ(1),…,xπ(n)). It immediately follows that not NON-π(P) and not 
STRONG-π(P).  

• If STRONG-π(P), then for all (t', w') with (t, w) < (t', w') we have (t', w') ⊨
P(xπ(1),…,xπ(n)). It immediately follows that not NON-π(P) and not WEAK-π(P). 

 
(50) Lemma: If G ⊆ Sn is a non-empty subset that is closed under function composition, then (G, ◦) is 

a subgroup of (Sn, ◦).  
 
Proof: Let π ∈ G. We can define recursively the permutation πm (π power m). We may pose 

π0 = εn and πm = π ◦ πm-1 for m ≥ 1. In mathematical combinatorics, o(π), called the 
order of π, is defined as the smallest positive integer k such that πk = εn which can be 
proven to exist (see Merris 2003: 186-187). As G is closed under ◦, εn = πk ∈ G 
serving as the neutral element of G. Furthermore, it is obvious that π-1 = πk-1 is the 
inverse element of π in G (and also in Sn). Furthermore it is obvious that the law of 
associativity also holds for (G, ◦).  

 
(52) Lemma: Sambi(P) ⊆ Sn is always a subgroup of (Sn, ◦).  

 
Proof: All we need to show is that Sambi(P) is closed under ◦. To show this point, let π, μ ∈

Sambi(P). We thus have ∀x1…∀xn [ P(x1,…,xn) ∧ P(xπ(1),…,xπ(n))] and ∀y1…∀yn
[ P(y1,…,yn) ∧ P(yμ(1),…,yμ(n))]. Posing y1 = xπ(1) ,…, yn = xπ(n), we may obtain 
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the simplified ∀x1…∀xn [ P(x1,…,xn) ∧  P(xπ(μ(1)),…,xπ(μ(n)))]. We have thus 
shown that AMBI-π◦μ(P) or that π◦μ ∈ Sambi(P). In other words, Sambi(P) is closed.  

 
(53) Lemma: Sstrong(P) ⊆ Sn is either empty or a subgroup of (Sn, ◦).  

 
Proof: We must demonstrate that if Sstrong(P) is non-empty, then it is closed under ◦. To show 

this point, let π, μ ∈ Sstrong(P), let x1,…,xn be n arguments and (t, w) a scenario such 
that (t, w) ⊨ P(x1,…,xn). As STRONG-μ(P), for all (t', w') with (t, w) < (t', w') we have 
(t', w') ⊨ P(xμ(1),…,xμ(n)). As STRONG-π(P), for all (t'', w'') with (t', w') < (t'', w'') we 
have (t'', w'') ⊨ P(xπ(μ(1)),…,xπ(μ(n))). As the accessibility relation < is transitive, it is 
true that for all (t'', w'') with (t, w) < (t'', w'') we have (t'', w'') ⊨ P(xπ(μ(1)),…,xπ(μ(n))). 
Therefore we have proven that STRONG-π◦μ(P) and that Sstrong(P) is closed.  

 
(54) Lemma: Sweak(P) ⊆ Sn is either empty or a subgroup of (Sn, ◦). 

 
Proof: Again, all we need to establish is that if Sweak(P) is non-empty, then it is closed under ◦. 

Let therefore π, μ ∈ Sweak(P), let x1,…,xn be n arguments and (t, w) a scenario such 
that (t, w) ⊨ P(x1,…,xn). As WEAK-μ(P), there are two scenarios (t1, w1) and (t2, w2) 
with (t, w) < (t1, w1) and (t, w) < (t2, w2) such that (t1, w1) ⊨ P(xμ(1),…,xμ(n)) and 
(t2, w2) ⊨ ¬P(xμ(1),…,xμ(n)). For (t1, w1) there are two other scenarios (t3, w3) and 
(t4, w4) accessible from (t1, w1) such that (t3, w3) ⊨ P(xπ(μ(1)),…,xπ(μ(n))) and 
(t4, w4) ⊨ ¬P(xπ(μ(1)),…,xπ(μ(n))). As the accessibility relation < is transitive, (t3, w3) 
and (t4, w4) are also accessible from (t, w). We have thus shown the existence of two 
scenarios, one that satisfies P(xπ(μ(1)),…,xπ(μ(n))), the other that rejects it. It follows that 
WEAK-π◦μ(P) and that Sweak(P) is closed.  

 

List of abbreviations  

1P SG First person singular pronoun 
2P SG Second person singular pronoun 
3P SG Third person singular pronoun 
3P PL Third person plural pronoun 
B Beneficiary (or recipient) 
CL Classifier 
DEM:DIST Demonstrative: distal distance to Speaker 
DP Dynamic perfect 
EXP Experiential marker 
HAB Habitual marker 
IDE Ideophone 
NUM:3 Number and its value 
INDIC Indicative 
INV Inverse affix 
O Object 
OBV Obviative case marking 
PREP Preposition 
RECL Reciprocal anaphor 
S Subject (or agent) 
V Verb 
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