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Abstract. Guitart and Lair [5] have established the existence of Locally Free Diagrams, which can
be seen as a purely categorical version of the solution set condition, and of the Lowenheim–Skolem
theorem. Their proof is based on a transfinite construction by saturation. An iterative principle is
established, but the construction is not effective for every step. The thesis of Gerner [3] contains
a more effective proof for the existence of Locally Free Diagrams (with the restriction that the
projective bases of the sketch S must all be finite). But the problem of [3] lies in the impossibility
to name concretely the elements of the Locally Free Diagrams. The present paper will provide a
new construction of the Locally Free Diagram in which the effective and the non-effective part will
be much more separated (again the projective bases must all be finite). This construction represents
a notable improvement with regard to the proof of [3] allowing the concrete designation of the
elements of the Locally Free Diagrams. Furthermore we show that the construction is relatively
filtered (i.e. satisfies the “filtered”-property).
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1. Prerequisites

1.1. MOTIVATION

1.1.1. Free Structures

In Algebra, free structures have been studied with interest for some time: the
free monoid generated by an alphabet, the abelian group generated by a set, etc.
In all these cases the situation is the same: there is a set X on which we want
to construct an algebraic structure of a given type such that for any function
from X to an algebraic structure M of this type there is a unique factorization
property for the free algebraic structure F (X) generated by X. We can express
this with the following formula:

Hom(X,M) ∼= Hom(F (X),M).

In the case of the monoids we can effectively construct the elements of the free
monoid generated by an alphabet as the words on this alphabet.
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